Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutr Diabetes ; 14(1): 3, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321009

RESUMO

BACKGROUND: Familial partial lipodystrophy (FPLD) is an inherited disorder of white adipose tissue that causes premature cardiometabolic disease. There is no clear diagnostic criteria for FPLD, and this may explain the under-detection of this condition. AIM: This pilot study aimed to describe the clinical features of women with FPLD and to explore the value of adipose tissue measurements that could be useful in diagnosis. METHODS: In 8 women with FPLD and 4 controls, skinfold measurements, DXA and whole-body MRI were undertaken. RESULTS: Whole genome sequencing was negative for monogenic metabolic causes, but polygenic scores for partial lipodystrophy were elevated in keeping with FPLD type 1. The mean age of diagnosis of DM was 31 years in the FPLD group. Compared with controls, the FPLD group had increased HOMA-IR (10.3 vs 2.9, p = 0.028) and lower mean thigh skinfold thickness (19.5 mm vs 48.2 mm, p = 0.008). The FPLD group had lower percentage of leg fat and an increased ratio of trunk to leg fat percentage on DXA. By MRI, the FPLD group had decreased subcutaneous adipose tissue (SAT) volume in the femoral and calf regions (p < 0.01); abdominal SAT, visceral adipose tissue, and femoral and calf muscle volumes were not different from controls. CONCLUSION: Women with FPLD1 in Singapore have significant loss of adipose but not muscle tissue in lower limbs and have early onset of diabetes. Reduced thigh skinfold, and increased ratio of trunk to leg fat percentage on DXA are potentially clinically useful markers to identify FPLD1.


Assuntos
Diabetes Mellitus , Lipodistrofia Parcial Familiar , Lipodistrofia , Humanos , Feminino , Adulto , Projetos Piloto , Lipodistrofia Parcial Familiar/diagnóstico , Lipodistrofia Parcial Familiar/genética , Tecido Adiposo
2.
Comput Biol Med ; 167: 107608, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37897959

RESUMO

BACKGROUND: Existing literature has highlighted structural, physiological, and pathological disparities among abdominal adipose tissue (AAT) sub-depots. Accurate separation and quantification of these sub-depots are crucial for advancing our understanding of obesity and its comorbidities. However, the absence of clear boundaries between the sub-depots in medical imaging data has challenged their separation, particularly for internal adipose tissue (IAT) sub-depots. To date, the quantification of AAT sub-depots remains challenging, marked by a time-consuming, costly, and complex process. PURPOSE: To implement and evaluate a convolutional neural network to enable granular assessment of AAT by compartmentalization of subcutaneous adipose tissue (SAT) into superficial subcutaneous (SSAT) and deep subcutaneous (DSAT) adipose tissue, and IAT into intraperitoneal (IPAT), retroperitoneal (RPAT), and paraspinal (PSAT) adipose tissue. MATERIAL AND METHODS: MRI datasets were retrospectively collected from Singapore Preconception Study for Long-Term Maternal and Child Outcomes (S-PRESTO: 389 women aged 31.4 ± 3.9 years) and Singapore Adult Metabolism Study (SAMS: 50 men aged 28.7 ± 5.7 years). For all datasets, ground truth segmentation masks were created through manual segmentation. A Res-Net based 3D-UNet was trained and evaluated via 5-fold cross-validation on S-PRESTO data (N = 300). The model's final performance was assessed on a hold-out (N = 89) and an external test set (N = 50, SAMS). RESULTS: The proposed method enabled reliable segmentation of individual AAT sub-depots in 3D MRI volumes with high mean Dice similarity scores of 98.3%, 97.2%, 96.5%, 96.3%, and 95.9% for SSAT, DSAT, IPAT, RPAT, and PSAT respectively. CONCLUSION: Convolutional neural networks can accurately sub-divide abdominal SAT into SSAT and DSAT, and abdominal IAT into IPAT, RPAT, and PSAT with high accuracy. The presented method has the potential to significantly contribute to advancements in the field of obesity imaging and precision medicine.


Assuntos
Gordura Abdominal , Obesidade , Adulto , Masculino , Criança , Humanos , Feminino , Estudos Retrospectivos , Gordura Abdominal/diagnóstico por imagem , Gordura Subcutânea Abdominal , Redes Neurais de Computação , Tecido Adiposo , Imageamento por Ressonância Magnética
3.
Radiol Artif Intell ; 3(5): e200304, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34617030

RESUMO

PURPOSE: To develop and evaluate an automated segmentation method for accurate quantification of abdominal adipose tissue (AAT) depots (superficial subcutaneous adipose tissue [SSAT], deep subcutaneous adipose tissue [DSAT], and visceral adipose tissue [VAT]) in neonates and young children. MATERIALS AND METHODS: This was a secondary analysis of prospectively collected data, which used abdominal MRI data from Growing Up in Singapore Towards healthy Outcomes, or GUSTO, a longitudinal mother-offspring cohort, to train and evaluate a convolutional neural network for volumetric AAT segmentation. The data comprised imaging volumes of 333 neonates obtained at early infancy (age ≤2 weeks, 180 male neonates) and 755 children aged either 4.5 years (n = 316, 150 male children) or 6 years (n = 439, 219 male children). The network was trained on images of 761 randomly selected volumes (neonates and children combined) and evaluated on 100 neonatal volumes and 227 child volumes by using 10-fold validation. Automated segmentations were compared with expert-generated manual segmentation. Segmentation performance was assessed using Dice scores. RESULTS: When the model was tested on the test datasets across the 10 folds, the model had strong agreement with the ground truth for all testing sets, with mean Dice similarity scores for SSAT, DSAT, and VAT, respectively, of 0.960, 0.909, and 0.872 in neonates and 0.944, 0.851, and 0.960 in children. The model generalized well to different body sizes and ages and to all abdominal levels. CONCLUSION: The proposed segmentation approach provided accurate automated volumetric assessment of AAT compartments on MR images of neonates and children.Keywords Pediatrics, Deep Learning, Convolutional Neural Networks, Water-Fat MRI, Image Segmentation, Deep and Superficial Subcutaneous Adipose Tissue, Visceral Adipose TissueClinical trial registration no. NCT01174875 Supplemental material is available for this article. © RSNA, 2021.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...